河南省作物分子育种研究院/农业部黄淮中部小麦生物学与遗传育种重点实验室/河南省麦类种质资源创新与改良重点实验室;
随着全球平均气温持续攀升,高温胁迫日益成为小麦生产的限制因素。综述了高温胁迫对小麦产量和品质的影响、高温胁迫下小麦生理生化的变化以及小麦耐热性的遗传研究。通过常规育种手段与高通量分子标记辅助选择等现代生物育种技术的融合,培育耐热、高产的小麦新品种,保障全球粮食安全。
346 | 0 | 55 |
下载次数 | 被引频次 | 阅读次数 |
[1] LIPIEC J,DOUSSAN C,NOSALEWICZ A,et al. Effect of drought and heat stresses on plant growth and yield:a review[J]. International Agrophysics,2013,27(4):463-477.
[2]中国农业科学院品种资源研究所麦类研究室.中国小麦品种资源的系谱及其特性[M].上海:上海科学技术出版社,1982.
[3]徐如强,孙其信,张树榛.小麦耐热性研究现状与展望(综述)[J].中国农业大学学报,1998,3(3):33-40.
[4] WARRINGTON I J,DUNSTONE R L,GREEN L M. Temperature effects at three development stages on the yield of the wheat ear[J].Australian Journal of Agricultural Research,1977,28(1):11-27.
[5] JOHNSON R C,KANEMASU E T. Yield and development of winter wheat at elevated temperatures[J]. Agronomy Journal,1983,75(3):561-565.
[6] WARDLAW I F,SOFIELD I,CARTWRIGHT P M. Factors limiting the rate of dry matter accumulation in the grain of wheat grown at high temperature[J]. Functional Plant Biology,1980,7(4):387.
[7] FISCHER R A, MAURER O R. Crop temperature modification and yield potential in a dwarf spring wheat[J]. Crop Science,1976,16(6):855-859.
[8]封超年,郭文善,施劲松,等.小麦花后高温对籽粒胚乳细胞发育及粒重的影响[J].作物学报,2000,26(4):399-405.
[9]郑飞,何钟佩.高温胁迫对冬小麦灌浆期物质运输与分配的影响[J].中国农业大学学报,1999,4(1):73-76.
[10]李永庚,于振文,张秀杰,等.小麦产量与品质对灌浆不同阶段高温胁迫的响应[J].植物生态学报,2005,29(3):461-466.
[11] HURKMAN W J,MCCUE K F,ALTENBACH S B,et al. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm[J]. Plant Science,2003,164(5):873-881.
[12] KOVACS M I P,FU B X,WOODS S M,et al. Thermal stability of wheat gluten protein:its effect on dough properties and noodle texture[J]. Journal of Cereal Science,2004,39(1):9-19.
[13] SOFIELD I,EVANS L T,COOK M G,et al. Factors influencing the rate and duration of grain filling in wheat[J]. Functional Plant Biology,1977,4(5):785-797.
[14]闫素辉,尹燕枰,李文阳,等.花后高温对不同耐热性小麦品种籽粒淀粉形成的影响[J].生态学报,2008,28(12):6138-6147.
[15] KUMAR T A,CHARAN T B. Temperature-stress-induced impairment of chlorophyll biosynthetic reactions in cucumber and wheat[J]. Plant Physiology,1998,117(3):851-858.
[16] ALLAKHVERDIEV S I. Recent perspectives of photosystem II:structure, function and dynamics[J]. Photosynthesis Research,2008,98(1/2/3):1-5.
[17] LADJAL M,EPRON D,DUCREY M. Effects of drought preconditioning on thermotolerance of photosystem II and susceptibility of photosynthesis to heat stress in cedar seedlings[J]. Tree Physiology,2000,20(18):1235-1241.
[18] MOHAN N,JHANDAI S,BHADU S,et al. Acclimation response and management strategies to combat heat stress in wheat for sustainable agriculture:a state-of-the-art review[J].Plant Science,2023,336:111834.
[19] MATHUR S,JAJOO A,MEHTA P,et al. Analysis of elevated temperature-induced inhibition of photosystem II using chlorophyll a fluorescence induction kinetics in wheat leaves(Triticum aestivum)[J]. Plant Biology,2011,13(1):1-6.
[20] RAINES C A. Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield:current and future strategies[J].Plant Physiology,2011,155(1):36-42.
[21] PARRY M A J,KEYS A J,MADGWICK P J,et al. Rubisco regulation:a role for inhibitors[J]. Journal of Experimental Botany,2008,59(7):1569-1580.
[22] CHEN Y,WANG X M,ZHOU L,et al. Rubisco activase is also a multiple responder to abiotic stresses in rice[J]. PLo S One,2015,10(10):e0140934.
[23] SHIVHARE D,MUELLER-CAJAR O. In vitro characterization of thermostable CAM Rubisco activase reveals a Rubisco interacting surface loop[J]. Plant Physiology,2017,174:1505-1516.
[24] ZOU M Q,YUAN L Y,ZHU S D,et al. Effects of heat stress on photosynthetic characteristics and chloroplast ultrastructure of a heat-sensitive and heat-tolerant cultivar of Wucai(Brassica campestris L.)[J]. Acta Physiologiae Plantarum,2016,39(1):30.
[25] O'LEARY A K,BLACKBUM J. The importance of the phosphatase PRL family sub-cellular localization during the cellular cycle[J]. Cancer Research,2019,79(13Supp):1789-1789.
[26] HU L T,ZHU B L,LAI Y J,et al. HMGCS2promotes autophagic degradation of the amyloid-β precursor protein through ketone body-mediated mechanisms[J]. Biochemical and Biophysical Research Communications,2017,486(2):492-498.
[27] GRIGOROVA B,VASEVA I,DEMIREVSKA K,et al.Combined drought and heat stress in wheat:changes in some heat shock proteins[J]. Biologia Plantarum,2011,55(1):105-111.
[28] ALMESELMANI M,DESHMUKH P S,CHINNUSAMY V.Effects of prolonged high temperature stress on respiration,photosynthesis and gene expression in wheat(Triticum aestivum L.)varieties differing in their thermotolerance[J].Global Science Books,2012,6(1):25-32.
[29]屠小菊,汪启明,饶力群.高温胁迫对植物生理生化的影响[J].湖南农业科学,2013(13):28-30.
[30]夏莹莹,叶航,马锦林,等. 4个油茶品种的半致死温度与耐热性研究[J].中国农学通报,2012,28(4):58-61.
[31] AHMAD S,WAHID A,RASUL E,et al. Comparative morphological and physiological responses of green gram genotypes to salinity applied at different growth stages[J]. Botanical Bulletin of Academia Sinica,2005,46(2):135-142.
[32]胡海洲.基于脂质组学的小麦响应高温胁迫的生理机制[D].郑州:河南农业大学,2023.
[33] ALMESELMANI M,ABDULLAH F,HARERI F,et al. Effect of drought on different physiological characters and yield component in different varieties of Syrian durum wheat[J].Journal of Agricultural Science,2011,3(3):127-133.
[34] SOKOLOV M,LYUBARSKY A L,STRISSEL K J,et al.Massive light-driven translocation of transducin between the two major compartments of rod cells:a novel mechanism of light adaptation[J]. Neuron,2002,34(1):95-106.
[35] KHATOON S,MAJID S A,BIBI A,et al. Yield stability evaluation of wheat(Triticum aestivum L.)cultivated on different environments of district Poonch(AJK)Pakistan based upon water-related parameters[J]. International Journal of Agronomy and Agricultural Research,2016,8(4):2225-3610.
[36]万长建,郑有飞,张建军.小麦蒸腾速率规律分析及其计算[J].中国农业气象,1998,19(6):12-15,20.
[37]李倩,谭雪莲.旱地植物蒸腾作用研究进展[J].甘肃农业科技,2006(10):18-20.
[38]潘瑞炽,董愚得.植物生理学[M]. 3版.北京:高等教育出版社,1995.
[39]王衍安,龚维红.植物与植物生理[M].北京:高等教育出版社,2004.
[40] SUZUKI N,RIVERO R M,SHULAEV V,et al. Abiotic and biotic stress combinations[J]. New Phytologist,2014,203(1):32-43.
[41] BOKSZCZANIN K L, SPOT-ITN CONSORTIUM,FRAGKOSTEFANAKIS S. Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance[J]. Frontiers in Plant Science,2013,4:315.
[42] SATTAR A,SHER A,IJAZ M,et al. Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat[J]. PLo S One,2020,15(5):e0232974.
[43] NOCTOR G,FOYER C H. Ascorbate and glutathione:keeping active oxygen under control[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:249-279.
[44] BUTTAR Z A,WU S N,ARNAO M B,et al. Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery[J]. Plants,2020,9(7):809.
[45] ASTHIR B. Protective mechanisms of heat tolerance in crop plants[J]. Journal of Plant Interactions,2015,10(1):202-210.
[46] BALLA K,BENCZE S,JANDA T,et al. Analysis of heat stress tolerance in winter wheat[J]. Acta Agronomica Hungarica,2009,57(4):437-444.
[47] ALMESELMANI M,DESHMUKH P S,SAIRAM R K. High temperature stress tolerance in wheat genotypes:role of antioxidant defence enzymes[J]. Acta Agronomica Hungarica,2009,57(1):1-14.
[48]郭晓丽,白丽荣,吕亚慈,等.抗干热风小麦新种质生理特性分析[J].种子,2018,37(12):89-91.
[49] BI H H,ZHAO Y,LI H H,et al. Wheat heat shock factor Ta Hsf A6f increases ABA levels and enhances tolerance to multiple abiotic stresses in transgenic plants[J]. International Journal of Molecular Sciences,2020,21(9):3121.
[50] ANDRA′SI N,PETTKO′-SZANDTNER A,SZABADOS L.Diversity of plant heat shock factors:regulation,interactions,and functions[J]. Journal of Experimental Botany,2021,72(5):1558-1575.
[51] BANIWAL S K,BHARTI K,CHAN K Y,et al. Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors[J]. Journal of Biosciences,2004,29(4):471-487.
[52] WANG H R,FENG M,JIANG Y J,et al. Thermosensitive SUMOylation of Ta Hsf A1 defines a dynamic ON/OFF molecular switch for the heat stress response in wheat[J]. The Plant Cell,2023,35(10):3889-3910.
[53] CHAUHAN H,KHURANA N,AGARWAL P,et al. A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment[J]. PLo S One,2013,8(11):e79577.
[54] OGAWA D,YAMAGUCHI K,NISHIUCHI T. High-level overexpression of the Arabidopsis Hsf A2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth[J]. Journal of Experimental Botany,2007,58(12):3373-3383.
[55] MENG X Z,ZHAO B H,LI M Y,et al. Characteristics and regulating roles of wheat Ta Hsf A2-13 in abiotic stresses[J].Frontiers in Plant Science,2022,13:922561.
[56] ZHANG Y J,ZHANG Y Y,ZHANG H N,et al. Characterization and regulatory roles in thermotolerance of wheat heat shock transcription factor gene Ta Hsf A2e[J]. Acta Agronomica Sinica,2018,44(12):1818.
[57] MA Z Y,LI M Y,ZHANG H N,et al. Alternative splicing of Ta Hsf A2-7 is involved in the improvement of thermotolerance in wheat[J]. International Journal of Molecular Sciences,2023,24(2):1014.
[58] GUO X L,YUAN S N,ZHANG H N,et al. Heat-response patterns of the heat shock transcription factor family in advanced development stages of wheat(Triticum aestivum L.)and thermotolerance-regulation by Ta Hsf A2-10[J]. BMC Plant Biology,2020,20(1):364.
[59] LIU Z H,LI G L,ZHANG H N,et al. Ta Hsf A2-1,a new gene for thermotolerance in wheat seedlings:characterization and functional roles[J]. Journal of Plant Physiology,2020,246/247:153135.
[60] DUAN S N,LIU B H,ZHANG Y Y,et al. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.[J].BMC Genomics,2019,20(1):257.
[61] SUN Q X,QUICK J S. Chromosomal locations of genes for heat tolerance in tetraploid wheat[J]. Cereal Research Communications,1991,19(4):431-437.
[62] MASON R E,MONDAL S,BEECHER F W,et al. QTL associated with heat susceptibility index in wheat(Triticum aestivum L.)under short-term reproductive stage heat stress[J].Euphytica,2010,174(3):423-436.
[63] YANG J,SEARS R G,GILL B S,et al. Quantitative and molecular characterization of heat tolerance in hexaploid wheat[J]. Euphytica,2002,126(2):275-282.
[64] VIJAYALAKSHMI K,FRITZ A K,PAULSEN G M,et al.Modeling and mapping QTL for senescence-related traits in winter wheat under high temperature[J]. Molecular Breeding,2010,26(2):163-175.
[65] PALIWAL R,RODER M S,KUMAR U,et al. QTL mapping of terminal heat tolerance in hexaploid wheat(T. aestivum L.)[J].Theoretical and Applied Genetics,2012,125(3):561-575.
[66]陈希勇,赵爱菊,李亚军,等.小麦耐热性基因的染色体定位和遗传效应分析[J].华北农学报,2007,22(增刊2):1-5.
[67]李世平,昌小平,王成社,等.小麦灌浆期耐热性QTL定位分析[J].中国农业科学,2013,46(10):2119-2129.
[68] KUMAR S,KUMARI J,BHUSAL N, et al. Genome-wide association study reveals genomic regions associated with ten agronomical traits in wheat under late-sown conditions[J].Frontiers in Plant Science,2020,11:549743.
[69] WANG X B,GUAN P F,XIN M M, et al. Genome-wide association study identifies QTL for thousand grain weight in winter wheat under normal-and late-sown stressed environments[J]. Theoretical and Applied Genetics,2020,134(1):143-157.
[70] XUE G P, DRENTH J, MCINTYRE C L, et al. Ta Hsf A6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat(Triticum aestivum L.)including previously unknown Hsf targets[J]. Journal of Experimental Botany, 2015, 66(3):1025-1039.
[71] QIN D D,WANG F,GENG X L, et al. Overexpression of heat stress-responsive Ta MBF1c,a wheat(Triticum aestivum L.)Multiprotein Bridging Factor,confers heat tolerance in both yeast and rice[J]. Plant Molecular Biology,2015,87(1):31-45.
[72] ZANG X S,GENG X L,WANG F,et al. Overexpression of wheat ferritin gene Ta FER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging[J]. BMC Plant Biology,2017,17(1):14.
[73] ZANG X S,GENG X L,LIU K L,et al. Ectopic expression of Ta OEP16-2-5B,a wheat plastid outer envelope protein gene,enhances heat and drought stress tolerance in transgenic Arabidopsis plants[J]. Plant Science,2017,258:1-11.
[74] ZHANG L Y,GENG X L,ZHANG H Y,et al. Isolation and characterization of heat-responsive gene Ta GASR1 from wheat(Triticum aestivum L.)[J]. Journal of Plant Biology,2017,60(1):57-65.
[75] SINGH A,KHURANA P. Molecular and functional characterization of a wheat B2 protein imparting adverse temperature tolerance and influencing plant growth[J]. Frontiers in Plant Science,2016,7:642.
[76] HU X J, CHEN D D, MCLNTYRE C L,et al. Heat shock factor C2a serves as a proactive mechanism for heat protection in developing grains in wheat via an ABA-mediated regulatory pathway[J]. Plant Cell&Environment,2018,41(1):79-98.
[77] WANG Y,SUN FL,CAO H,et al. Tami R159 directed wheat Ta GAMYB cleavage and its involvement in anther development and heat response[J]. PLo S One,2012,7(11):e48445.
[78] HE G H, XU J Y, WANG Y X, et al. Drought-responsive WRKY transcription factor genes Ta WRKY1 and Ta WRKY33from wheat confer drought and/or heat resistance in Arabidopsis[J].BMC Plant Biology,2016,16:1-16.
[79] GUO W W,ZHANG J Z,ZHANG N,et al. The wheat NAC transcription factor Ta NAC2L is regulated at the transcriptional and post-translational levels and promotes heat stress tolerance in transgenic Arabidopsis[J]. PLo S One,2015,10(8):e0135667.
基本信息:
DOI:
中图分类号:S512.1
引用信息:
[1]王松峰,王永霞,郭瑞.小麦耐热性研究进展[J].大麦与谷类科学,2024,41(05):1-7.
基金信息:
农业生物育种重大专项(2023ZD04023);; 黄淮南片超高产广适小麦新品种培育(2023ZD040230304)